
RETDAT Support at 10 Hz
Refined reply period logic

Wed, Nov 26, 2003

The logic for RETDAT protocol support has always assumed that systems operate at 15 Hz. But 
there are a few IRMs that operate at rates slower than that, especially those node in A0 that 
run at 10 Hz. This note describes changes made to produce replies at the proper rate for 
nodes that operate at rates other than 15 Hz.

Introduction
The RETDAT protocol used for data acquisition by Acnet clients specifies a reply period 

in units of 60 Hz. A request for 15 Hz replies specifies a value of 4; a request for 1 Hz replies 
specifies a value of 60. The original logic in RETDAT support assumed that the number of 
cycles between replies is merely the number of 60 Hz cycles divided by 4, which is exactly 
right if a cycle is 1/15 second. But if a cycle were 10 Hz, the 1 Hz replies would occur every 
1.5 seconds. this was not a problem before now, since the Acnet clients (Vaxes) were not 
gauging whether replies occurred at the specified rate. But the new Java-based software 
watches for this, and it was noticed that some nodes seemed to be tardy with their replies, 
especially those operating at 10 Hz.

Changes made
The RETDAT support is handled by the ACREq module. There are four parts of that code 

where the assumption is made about 15 Hz operation. A new (small) function was written to 
assist with these changes, called FTDCYCL. Its single argument is a count of 60 Hz cycles, and 
its result is a count of local cycles of whatever rate. It makes use of the global variable 
CYCLNGTH, which is a byte whose values is the length of the last operating cycle in units of 
half milliseconds. Since this value is obtained by differencing two samples of a 2000 Hz 
counter, jitter is usually seen in the value. Empirically, it was seen that a good approximation 
to converting from 60 hz units to local cycle units is:

cycles = sixty*34/CYCLNGTH

where sixty is the count of 60 Hz cycles, and cycles is the result count in local cycles. But for 
suitably long periods, which mean large values of the 60 Hz count, the result may be 
different as the value of CYCLNGTH fluctuates. If the data is being collected through a server 
node, this opens up the possibility that the result could vary slightly as CYCLNGTH varies. In 
order to make sure this logic does not cause problems for the present 15 Hz nodes, a special 
check is made for 15 Hz operation, which is defined as having values of CYCLNGTH in the 
range 132–135. (The usual values seen are, of course, 133–134.) This special range check has 
also been used in IntsFP to detect 15 Hz to update the BCD format time-of-day, which is 
always in 15 Hz units. If 15 Hz operation is so indicated, the 60 Hz count is merely divided 
by 4, as always. With any other value, the formula is used.

For 10 Hz operation, we might see CYCLNGTH values of 200 and 201, say. For a comparatively 
slow 10 second reply period, the result of using the formula will be 102 and 101. If a data 
server node is used, the server node might therefore compute a different reply period than 
will the target node. And this will result in errors being reported every 10 seconds, in this 
case, which could be quite annoying. It is probably best not to use a server node for nodes not 
operating at 15 Hz. But the special check will avoid this problem for any nodes running at 15 
Hz. And for more typical rates such as 1 Hz, there should not be such a problem in any case.


